China Headquarters

Address: 3/F, Block 2, Nanyou Tianan Industrial Park, Nanshan District Shenzhen, China Website: http://www.leadshine.com

Sales Hot Line:

Tel: 86-755-2643 4369 (for All) 86-755-2641-7674 (for Asia, Australia, Africa region) 86-755-2640-9254 (for Europe, America region) Fax: 86-755-2640-2718 Email: sales@leadshine.com

Technical Support:

Tel: 86 755-2641-8447 and 86-755-2647-1129 Fax: 86-755-2640-2718 Email: tech@leadshine.com and vic@leadshine.com

Leadshine America, Inc

Address: 25 Mauchly, Suite 318, Irvine, CA 92618, USA Tel: 1-949-608-7270 Fax: 1-949-608-7298 Website: http://www.leadshineUSA.com Email: usa_sales@leadshine.com and cli@leadshine.com

Leadshine Hong Kong

Address: Rm 3, 9/F, Block E, Wah Lok Industrial Center,31-41 Shan Mei St., Fo Tan, Shatin, Hong Kong Tel: 852-2952-9114 Fax: 852-2952-9395 Email: hk_sales@leadshine.com

Leading Technology Shining Value

Motion Control Products 2012 / 2013

- Stepper Motors & Drives Easy Servos Servo Motors & Drives Power Supplies Motion Controllers

Company Overview

Founded in 1997, Leadshine Motion Technology Ltd. specializes in developing, manufacturing, and distributing high-quality cost-effective motion control products. Its products include motion controllers, integrated and discrete stepper drives and motors, easy servos, DC servo products, AC servo products, and power supplies. Leadshine serves various industrial and OEM customers in Asia, Europe, North/South America, Africa and Australia.

Leadshine is one of the LARGEST manufacturers of motion control products around the world. Led by an MIT PhD graduate, Leadshine's R&D team of 80 talented engineers is capable of designing high-quality motion control products based on the latest technologies. Leadsine's manufacturing facilities are ISO-9001 certified and professionally staffed.

Leadshine is committed to provide its customers with world-class motion control products at highly competitive prices. "LEADING technology and SHINING value" is always what Leadshine intends to offer to its customers.

R&D

Leadshine is proud of its talented research & development team, which is one of the best in the motion control industry. We are capable of designing world-class products which can meet high requirements of our customers. Many innovative designs and products from Leadshine have been awarded for patents by Chinese government.

Product Quality

Leadshine has been awarded the ISO 9001 registration for quality management practices since September 2004. The certification is a testimony of Leadshine's commitment to provide its customers with high quality products and services.

Technical Support

Staffed with a highly professional and experienced technical support team, Leadshine can help its customers to increase productivity, reduce design & selection risks, and minimize the product development time. We are able to support our customers through email, telephone, field support, product studying conference, and some other approaches.

You can contact Leadshine technical support by phone at 86-755-2641-8447, by fax at 86-755-2640-2718, or by email at tech@leadshine.com.

Quality Products Selling Over 1,000,000 pcs/year!

Design & Verification

Since the formation in 1997, Leadshine has been investing heavily in research and development for the newest motion technology. Leadshine owns a large number of patents and copyrights on its hardware and software of its products. Before release to its customers, all Leadshine products have been verified and tested in Leadshine's state-of-the-art laboratory.

Quality Assurance

All Leadshine's products have to pass QC and 24-hour aging test, making the usual return & repair rate is under 0.5%. And that is why Leadshine can offer LONGER warranty period (18 months) than most other motion control product manufacturers.

Assembly Line

Leadshine product quality is guaranteed by an ISO-certified manufacturing system which includes rigorous supplier selection, incoming parts QC, in-process QC, final QA, and 24-hour aging test. The certification is a testimony of Leadshine's commitment to provide its customers with high quality products and services.

Support & Service

Leadshine's professional and experienced technical team can help customers to reduce design and selection risks, and minimize product development time through support of email, field support, exhibitions, product studying conference, etc.

Innovative Products with High Reliability

Currently, Leadshine offers three main series of 2-phase microstepping drives, the digital EM series, DM series and analog M series. The high performance DM drives are based on powerful 32-bit DSP control technology. Their features include super-low stepper noise, anti-resonance, low-speed ripple smoothing, and low motor heating. The EM series drives are leadshine's highest performance discrete stepper drives. They adopt more innovative technologies than the DM series, thus have more features, such as sensorless stall detection, user password protection, etc. The low-cost M drives employ precise analog current control and are characterized by extra high-speed torque, relatively low stepper noise, and low motor heating. Leadshine also supplies 3-phase digital and analog stepper drives.

Discrete Stepper Drives

Selection Guide 3
EM Series Digital Stepper Drives 5
EM402 5
EM5035
EM705 5
EM8065
DM Series Digital Stepper Drives 13
DM422C17
DM55618
DM870 19
DM1182 20
DM228221
3DM68322
DM805-AI23
M Series Analog Stepper Drives25

World-class Products at Highly Competitive Prices

Leadshine's easy servos adopt hybrid motion technology prevent loss of synchronization due to transient, continued overload, extreme acceleration or deceleration, or excessive slew speed, thus can significantly improve the performance and reliability of your motion control systems. This series servos do not need time consuming servo tuning and do not have hunting at standstill like a conventional servo.

Leadshine's iST series integrated stepper systems are one of the most compact stepper drive and motor package on the market. An iST integrated stepper has a stepper motor integrated with an advanced DSP based stepper drive. At very compact size and with all components integrated, the iST series steppers can save mounting space, and motor wiring time, reduce interference, and lower cable and labour cost.

Integrated Steppers

Selection Guide28	
iST Series 28	
iST17 28	
iST23 28	
iST23B28	
iST24 28	

Leadshine's iES series easy servos are highly integrated easy servo systems. An iES integrated easy servo has an easy servo motor and an easy servo drive. At very compact size and with all components integrated, the iES series easy servos can save mounting space, eliminate encoder connection and motor wiring time, reduce interference, and lower cable and labour cost. This series servos do not need time consuming servo tuning and do not have hunting at standstill like a conventional servo.

Leadshine offers full line of servo products, including discrete brushless ACS and EL5 series DSP-based digital servo drives, the ACM and BLM series brushless AC and DC servo motors, the DCS series DSP-based digital brush servo drives and the DCM series brush servo motors.

Leadshine also offers integrated servo products which adopt many innovative technologies. All Leadshine' servo products are well known for their costeffectiveness.

Leadshine offers 2-phase and 3-phase stepper motors from NEMA frame size 14 to 51. Made of high quality cold roll sheet copper and anti-high temperature permanent magnet, Leadshine's stepper motors are highly reliable and generate low motor heating. Because of their nice internal damping characteristics, those stepper motors can run very smoothly and have no obvious resonance area within the whole speed ranges.

Stepper Motors

Selection Guide 37
2-phase Stepper Motors
35 / 39 HSxx Series 39
42HSxx Series 40
57HSxx Series 41
86HSxx Series 42
110HSxx Series 43
130HSxx Series 44
3-phase Stepper Motors
573Sxx Series 45
863Sxx Series 46
Speed-Torque Curves 47

Easy Servos

ES Series Easy Servos

----- 51

Integrated Easy Servos

Selection Guide	61
iES Series (closed-loop)	61
iES17	61
iES23	61
iES23B	61
iES24	61

AC & DC Servos

Brushless Servos	71
ACS Series Servo Drives	75
ACM Series AC Servo Motors	81
BLM Series Brushless DC Servo Motors 8	83
iSV Series Integrated Servos 8	85
EL5 Series High Voltage Servos 8	86
Brush Servos	87
DCS303 9	91
DCS810 9	93
DCS810S	95
DCM Series DC Servo Motors	97

Product Catalog 2012 / 2013

Leadshine offers three series power supplies, including the SPS and RPS series switching mode power supplies and the PS series linear power supplies. These power supplies are specially designed to power inductive loads generated in stepper and servo systems.

Leadshine's full line of motion controllers includes single and multi-axis, bus-based and stand-alone controllers. Available interface options for international markets include PCI, USB, RS232 and Ethernet for the moment. These controllers provide high speed performance and can handle many modes of motion such as point-topoint positioning, jogging, linear and circular interpolation, continuous interpolation and helix interpolation.

Leading Technology

Power Supplies

SPS Series	101
RPS Series	103
PS Series	105

Motion Controllers

election Guide 109	
MC1000B 111	
MC2410B 113	
MC5480 115	
NC7480117	
MC6480119	
MC6400B 121	

Introduction to Motion Control

Basic Components of Motion Control System

Many different components are used in a variety of combinations to create a modern motion control system. Usually, the system will be comprised of the following basic elements: controller, drive/amplifier, actuator. And for a more integrated motion control system will be comprised of feedback, operator interface and host, besides elements mentioned above. A simplified block diagram of a motion control system would appear as shown below.

An Open-loop or a Simi-open-loop Motion Control (ie. a traditional stepper system, a simi-open-loop servo

* Operator Interface and Host

Operator interface and host are/is present to input control logic, modify programs, or provide real time operations, such as system shut down or schedule changes.

* Controller

The controller acts as brain of the system by taking the desired target positions and motion profiles and creating the trajectories for the motors to follow. It will include a means of entering a set of instructions or code into its memory which are then translated into a series of electrical pulses or analog signals and output to a drive for controlling some type of actuator.

* Drive/Amplifier

The drive/amplifier receives the signals from the controller and generate the current required to drive or turn the actuator.

* Actuator

The actuator provides the actual physical motion and will be closely coupled to the design characteristics of the drive. The drive/actuator set may be any one of several different design classifications. Typically, but by no means always, they will the form of an electronic drive and an electric motor. Other common means of motion are pneumatic or hydraulic actuators.

* Feedback Device

There are a wide variety of feedback devices that are commonly used in motion control systems today which provide information on linear or rotary motion, such as optical encoders, magnetic encoders and resolvers.

A Typical stepper System

l System system)					
Drive/Amplifier	-	Actuator	->	Feedback	η
p Motion Control Sy	vster	n]		

Selection Guide	3
EM Series Digital Stepper Drives	5
EM402	5
EM503	5
EM705	5
EM806	5
DM Series Digital Stepper Drives1	3
DM422C 1	.7
DM556 1	.8
DM8701	9
DM11822	.0
DM2282 2	1
3DM6832	2
DM805-Al2	3
M Series Analog Stepper Drives2	5

Discrete Steppers

Microstep Driver

SWZ

on

on

Off

Off

on

on

on

on

on

on

on

on

Off

Off

011

0/1

Off

0/1

011 0/1

on

SW3

Setting

4+

А.

8+

on

on

figh Itage

0

on

on

Off

Off

DM556

Current Table(Peak=RMS × 1.4)

on

on

On

on

on

on

on

Off

Off

Off

011

on

on

on

on

0/1

0//

on

Off

SW4: off=Half Current; on=Full Current

Pulsellev lable Pulsellev SW5 SW6 SW7 SW8

Off

Off

on

on

off

Off

on

on

Off

on

on

on

0/1

011

Pulse/rev Table

Off

on

off

on

Off

on

Off

on

Off

on

on

On

3200 6400

12800

5120

100

2000

4000

800

Vdc: +

Selection Guide for Discrete Stepper Drives

A stepper motor requires an electrical sequencer and it is called a stepper drive. The stepper drive is one of the key components in a stepper system. When you select a stepper drive for the special application, you can follow the following steps. Firstly, you should choose the drive type and determine the drive operating mode. Secondly, choose right supply voltage and output current according with the application and the motor. In the end, you should consider whether the acceptable control signals of the drive are right for those of your motion controller or not. Of course, the price of the chose drive should be acceptable too.

Drive Types

The output torque and power from a stepper motor are determined by the operating current, motor size, motor heat sinking, motor winding, and the type of the drive used. You can get much different performances from a given motor by choosing different type stepper drives.

There are some commonly-used drive types, such as unipolar constant voltage drive, unipolar L/nR constant voltage drive, unipolar timed bi-level drive, unipolar constant current drive, unipolar constant current drive and bipolar constant current microstepper drive. The highest output power and motor utilization for a given motor is achieved with the bipolar constant current drive. DC-losses is kept at a minimum due to maximum utilization of the copper in the winding and no power losses from leakage inductance and snubbing circuits since every winding only consists of one part.

Bipolar constant current microstepper drive is an improved version of the basic full- and half-step bipolar constant-current drive. Here, the winding currents form a sine/cosine pair. This greatly improves low frequency performances by eliminating overshot movements, ringing, and resonances. Performances at medium and high-stepper rates are close to those of full- and half-step. This drive uses the same power stage as the bipolar constantcurrent drive, but extra electronics for setting the sine/cosine current levels are used. Microstepper can also increase resolution and step accuracy of the stepper systems.

Supply Voltage and Output Current

Although both regulated and unregulated power supplies can be used to power the drives, unregulated power supplies are preferred due to their ability to withstand current surge. The power supply voltage must be within the drive's allowable operating voltage range. Beyond that, the choice of voltage is dependent on the application and the motor used.

Higher supply voltage can increase motor torque at higher speeds, being helpful for avoiding losing steps. However, higher voltage may cause bigger motor vibration at lower speed, and may also cause over-voltage protection or even drive damage. Therefore, it is suggested to choose only a sufficiently high supply voltage for intended application, and use power supplies with theoretical output voltage of at least 10% below drive's maximum input voltage, leaving room for power fluctuation and back-EMF.

For a given motor, higher drive current will make the motor output more torque, but it also causes more heating in the motor and the drive. Therefore, output current is generally set to be such that the motor will not overheat for long time operation. Phase current rating supplied by motor manufacturer is important when setting a drives output current, however the setting also depends on the leads and motor connections. Since parallel and serial connections of motor coils will significantly change the resulting inductance and resistance, it is important to set drive output current based on motor's phase current and connection types.

Leadshine's stepper drives cover a broad operating voltage range, from 18 to 312VDC or 18 to 220VAC. And most of Leadshine's stepper drives have overvoltage and over-current protection functions. All of Leadshine's stepper drives use DIP switches to set motor's operating current, and all of them have automatic idle-current reduction function.

Drive Modes

The most common drive modes are full-step, half-step and microstepping.

FULL-STEP MODE: This is the basic stepper driving mode, it offers the simplest control electronics and it is recommended for high and medium frequency operation. At these frequencies, the inertia of the motor and the load smooth out the torque, resulting in less vibration and noise compared to low-speed operation.

HALF-STEP MODE: Half-step gives smoother movement at low step rates compared to full-step and can be used to lower resonances at low speeds. Half-step doubles the system resolution. Observe that for most stepper motors, the step accuracy specification only is valid for 2-phase-on positions. The accuracy is lower and the stop-position hysteresis is larger for 1-phase-on nositions

Microstepping: The smoothest movement at low frequencies can be achieved with microstepping. If resonance-free movement at low step rates is important, the microstepping drive is the best choice. Microstepping can also be used to increase stop position accuracy beyond the normal motor limits.

Leadshine's stepper drives cover all drive modes. Both our digital stepper drives and analog stepper drives can operate in full-step, half-step and microstepping modes.

Introduction

Since releasing its first stepper drive in 1997, Leadshine has been designing stepper drives to satisfy the requirements of its customers. Today, Leadshine is one of the LARGEST stepper drive manufacturers in the world. Every year, over 900,000 Leadshine stepper drives are implemented in thousands of applications around the world. The applications include CNC routers, laser machines, electronic equipment, packaging equipment, textile equipment, pick-and-place device, etc

Currently, Leadshine offers three main series of 2-phase microstepping drives, the digital EM series, DM series and analog M series. The high performance DM drives are based on powerful 32-bit DSP control technology. Their features include super-low stepper noise, anti-resonance, low-speed ripple smoothing, and low motor heating. The EM series drives are leadshine's highest performance discrete stepper drives. They adopt more innovative technologies than the DM series, thus have more features, such as sensorless stall detection, user password protection, etc. The low-cost M drives employ precise analog current control and are characterized by superior high-speed torque, relatively low stepper noise, and low motor heating. Leadshine also supplies 3-phase digital and analog

Selection Table										
Dhaco Sorios	Sorios	Madal	Output	Operating	Microstep	Driving Motors	Weight Size (mm)	Contr	Control Signals	
PlidSe	Series	IVIOUEI	Current (A)	Voltage (V)	Resolution	(NEMA Size)	(kg)	5120 (11111)	PUL/DIR; CW/CCW	Single-ended; Differential
		EM402	0.3 - 2.2	DC(20-40)	1-512	14, 17, 23	0.12	86*55*20	PUL/DIR;	Single-ended; Differential
	514	EM503	0.5 - 4.5	DC(20-50)	1-512	14, 17, 23	0.2	116*69*26.5	PUL/DIR; CW/CCW	Single-ended; Differential
	EIVI	EM705	0.5 - 8.0	DC(20-78)	1-512	17, 23, 34	0.29	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential
		EM806	0.5 - 8.4	DC(24-80)	1-512	17, 23, 34	0.58	151*97*48	PUL/DIR;	Single-ended; Differential
		DM422C	* 0.3 - 2.2	DC(18-40)	1-512	14, 17, 23	0.115	86*55*20	PUL/DIR; CW/CCW	Single-ended;
		DM556	0.5 - 5.6	DC(18-50)	1-512	14, 17, 23	0.28	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential
	DM	DM870-	0.5 - 7.0	DC(18-80)	1-512	17, 23, 34	0.28	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential
2		DM1182	J.5-8.2 🔊	AC(80-150)	1-512	34, 42	1.3	202*167*63	PUL/DIR; CW/CCW	Single-ended; Differential
		DM2282	0.5-8.2	AC(80-220)	1-512	34, 42	1.3	202*167*63	PUL/DIR; CW/CCW	Single-ended; Differential
		DM805-AI	** 0.5-7.0	DC(18-80)	1-512	17, 23, 34	0.28	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential
		M542	1.0-4.2	DC(20-50)	2-128, 5-125	14, 17, 23	0.28	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential
		M550	1.2 - 5.0	DC(20-50)	2-256, 5-200	14, 17, 23	0.28	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential
		M760 🗹	1.45 - 6.0	DC(20-75)	2-256, 5-200	17, 23, 34	0.57	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential
	Μ	M860 🗸	2.4 - 7.2	DC(24-80)	2-256, 5-200	17, 23, 34	0.57	151*97*48	PUL/DIR; CW/CCW	Single-ended; Differential
		M880A	2.8 - 7.8	DC(24-80)	2-256, 5-200	17, 23, 34	0.57	151*97*48	PUL/DIR; CW/CCW	Single-ended; Differential
		MA860-4	* 2.4 - 7.2	AC(18-58)	2-256, 5-200	17, 23, 34	0.58	151*97*48	PUL/DIR; CW/CCW	Single-ended; Differential
		MA860H	2.4 - 7.2	AC(24-80)	2-256, 5-200	34, 42	0.65	151*97*52	PUL/DIR; CW/CCW	Single-ended; Differential
3	DM	3DM683	0.5 - 8.3	DC(18-60)	200-51200s/r	17, 23, 34	0.30	118*75.5*34	PUL/DIR; CW/CCW	Single-ended; Differential
Note: Please contact Leadshine or visit www.leadshine.com for information about other drives.										

Part Numbe

* This model has UL approved version and non-UL approved version.

** Command sources include step/direction, analog(0-5V).

*** For EM series drives, it's maximum RMS current.

PbF X X X X X

Maximum peak current*** 56 = 5.6 A Maximum supply voltage

model number (1 ~ 5 bit) PbF: Pb-free(Lead-free)

x x x x x : Custom or Special

Blank: Non Pb-free

DM SERIES DM422C DM556 DM870 DM1182 DM2282 3DM683 DM805-AI

EM Series Digital Stepper Drives

Sensorless stall detection and Super-low motor noise

Innovative Technologies

- Sensorless Stall Detection
- Super-low Motor Noise
- User Password Protection
- Anti-Resonance Technology
- Low-speed Ripple Smoothing
- Multi-stepping Technology
- Soft Start Technology
- Self-test and Auto-setup

Specifications								
Туре	Model	Voltage	RMS Cur.	Matching Motors				
	EM402	20-40 VDC	0.07-1.6A	NEMA8 to 23				
DC	EM503	20-50 VDC	0.21-3.0A	NEMA14 to 23				
Input	EM705	20-78 VDC	0.35-5.7A	NEMA17 to 34				
	EM806	24-80 VDC	0.35-6.0A	NEMA23 to 34				
AC	EM1206H*	80-150 VAC	0.35-6.0A	NEMA34 to 42				
Input	EM2306H*	80-230 VAC	0.35-6.0A	NEMA34 to 51				
 Over voltage, over current, short-circuit protections and fault out. *Available time: to be determined. 								

Innovative Technologies

Sensorless Stall Detection

1

By detecting motor voltage, current, and back-emf signal, EM series drives can detect loss-of-synchronization of stepper motors without encoders. The sensorless stall detection eliminates cost of feedback devices and time of cable connection.

2 Super-low Motor Noise

Precision current control technology and multi-stepping technology can reduce about 70% motor noise, making the EM series to be an ideal solution for the applications require low motor noise.

4 Anti-Resonance at Mid-range

Most stepper systems resonate at mid-range speed between 10 to 18 rps. EM stepper drives can calculate natural frequency of the stepper system and apply damping in control algorithm for anti-resonance, Providing optimizing torque and nulling mid-range instability.

3 Low-speed Ripple Smoothing

Electronic damping for 3 major resonance frequencies for stepper motors at low speed range, eliminating undesirable motor speed oscillation and delivering unique level of smoothness.

5 Multi-stepping Technology

Multi-stepping allows a low resolution input to produce a higher microstep output for smoother system performance. This function can improve smoothness of the stepper systems without upgrading your motion controllers.

DM SERIES DM422C DM556 DM870 DM1182 DM2282 3DM683 DM805-AI

EM SERI

Innovative Technologies

Command Signal Smoothing 6

Command signal smoothing can soften the effect of sudden changes in velocity and direction, thus delivering smoother performance and improving system lifetime.

Lower Heating Technology 8

Due to DSP precision current control algorithm, motor heat is 10-20 °C lower compare to a traditional stepper drive. Longer motor lifetime can be achieved, reducing maintenance cost. Drive heat is also 20% lower, offering higher drive stability and energy efficiency.

10 Self-test and Auto-configuration

Motor-self-test and parameter-auto-configuration technology offers optimum performance for different motors. It is easier for users to configure different axes or build different machines.

Soft Start Technology

On power up of a stepper motor, soft start technology allows a stepper motor gradually applying the shaft torque to the load and avoid "starting shock" to the machine. This function is implemented through software, so no additional hardware needed.

Torque Improvement 9

Torque improvement increases torque up to 30% at high speed, therefore they can drive a normal stepper motor to 3000 RPM or even higher, and significantly increase production efficiency.

11 User Password Protection

User password protection allows you to prevent others from copying your stepper drive configuration.

Features

- Sensorless stall detection eliminates cost of feedback devices and time of cable connection
- Super-low motor noise offers excellent guietness
- User password protection prevents others from copying your drive configurations
- Anti-Resonance optimizes torque and nulls mid-range instability
- Self-test and Auto-configuration technology offers optimum performance for different motors
- Multi-stepping allows a low resolution input to produce a higher microstep output for smoother system performance
- Built-in controller for simple test, easier to test the drive or system
- Options to set output current and microstep resolutions via DIP switch or software
- Command input of step&direction and CW/CCW pulse*
- Over-current, over-voltage, short-circuit protections besides sensorless stall detection
- Fault out prevents damages to your machines or the materials

Introduction

By implementing the latest motion control technologies, Leadshine's EM series DSP-based stepper drives deliver excellent performance not available before. Unique features of sensorless stall detection, extra smoothness and excellent high speed performance make EM stepper drives deliver servo-like performance at the cost of stepper drives. They are capable of delivering high performance without damages to your machines or the materials. Leadshine EM series stepper drives are able to drive 2-phase stepper motors from NEMA8 to NEMA51.

Part Number									
3 —	EM —	80 —	6 —	Н					
Phase	Series	Max Input	Max RMS Current	Power Input Type					
Blank: 2-phase	EM: EM series	40: 40 V	2: 1.5 A	Blank: DC					
3: 3-phase		80: 80 V	6: 6.0 A	H: DC and AC					

Electrical Specifications

Electrical opecifica									
Parameters	Input Voltage (VDC)			RMS Current (A)					
Model	Min	1	Typical	Max		Min	Typical		Max
EM402	+20		+24	+40		0.07	-		2.0
EM503	+20		+24	+50		0.21	-		3.2
EM705	+20		+48	+70		0.35	-		5.7
EM806	+24		+68	+80		0.35	-		6.0
EM1206H	80VAC/112V	DC 115V	AC/163VDC	150VAC/212	2VDC	0.35	-		6.0
EM2306H	80VAC/112V	DC 220V	AC/311VDC	240VAC/339	OVDC	0.35	-		6.0
Parameters	Pulse Inpu	ut Frequency (kHz) Logic Si		ignal Cu	al Current (mA) Isolation Re		on Resistanc	sistance (M Ω)	
Model	Min	Typical	Max	Min	Typica	l Max	Min	Typical	Max
EM Series	0	-	500	7	10	16	500	-	-

* The EM402 and E806 only support step&direction command.

Applications

Leadshine EM stepper drives are suitable for driving a wide range of stepper motors, from NEMA frame size 8 to 51. Typical applications includ CNC routers, laser cutters, laser markers, medical equipments, X-Y tables, measurement equipments, etc.

Pin Assignment

There are two connector types for an EM stepper drive. Connector type P1 (See figure below.) is for control signal connections, and connector type P2 is for power and motor connections. The RS232 communication port is for parameter configurations via computer. See brief descriptions for these connectors and interface below.

Tips:

1. Users are suggested to use motor self-test and auto-configuration function when powering up the system (with the motor) for the first time, or replacing a new motor.

2. To operate at current and microstep settings configured by software or STU, DIP switch must set to default mode.

3. Only software **ProTuner** can be used to configure anti-resonance parameter settings.

4. How many times the RED light blinks on in a periodic time indicates what protection has been activated. See manuals for detail.

PC Based and Handheld Configuration/Tuning Tools

For most of applications, configurations set by self-test and auto-configuration function should be good enough to meet the application requirements. However, a user can also configure the advanced features such as anti-resonance and advanced current loop tuning through software or STU-EM, a simple device specially designed for easy tuning.

ProTuner (Windows Based Setup Software)

- User password setting
- Upload and Download parameter settings
- PI parameter settings for current loop
- Microstep resolution and output current setting
- Electronic damping coefficient setting
- Anti-resonance parameter settings for 3 resonance areas
- DIR and ALM logic level setting
- Enable and disable sensorless stall detection. ENA reset function and command signal smoothing
- Parameter settings for self motion test
- Save, open, upload and download a configuration file
- Read the latest 10 failure events and clear these events
 - * 1 PC RS232 interface is necessary.

** Leadshine offers special cable for communication between ProTuner and the drive.

STU-EM (Handheld Configuration and Tuning Unit)

- Upload and Download parameter settings
- PI parameter settings for current loop
- Microstep resolution and output current setting
- Electronic damping coefficient setting
- DIR and ALM logic level setting
- Enable and disable sensorless stall detection, ENA reset function and command signal smoothing
- Parameter settings for self motion test
- Upload and download a configuration file

* Leadshine offers special cable for communication between the STU-EM and the drive.

Typical Connections

(a) Differential control signals

(b) Single-ended (NPN) control signals

* Other curves will be released soon.

ະວິດວິສຣີ 100 ໂປລະ 240 ໂຫຍີ 100 ໂດຍ ໂດຍ ໂດຍ ດຽວກາຍ 751 ອາຊ

gin Gran FM Annua and the second Construction of the second sec

Mechanical Specifications (Unit: mm 1 inch=25.4mm)

Units: mm 1 inch=25.4mm

(a) Mechanical specifications of the EM402

(c) Mechanical specifications of the EM705

(e) Mechanical specifications of the EM1206H and EM2306H

(d) Mechanical specifications of the EM806

EM SERIES

DM Series Digital Stepper Drives

Innovative Technologies

Low-speed Ripple Smoothing

Electronic damping for 3 major resonance frequencies for stepper motors at low speed range, eliminating undesirable motor speed oscillation and delivering unique level of smoothness.

Super Low Noise

Anti-Resonance at Mid-range

Precision current control technology and multi-stepping technology can Most stepper systems resonate at mid-range speed between 10 to 18 rps. EM stepper reduce about 70% motor noise, making the EM series to be an ideal drives can calculate natural frequency of the stepper system and apply damping in control algorithm for anti-resonance, Providing optimizing torque and nulling midsolution for the applications require low motor noise.

Multi-Stepping Technology

Lower Motor Heating

Lower Drive Heating

for users to configure different axes or build

Multi-stepping allows a low resolution input to produce a Due to DSP precision current control algorithm, Drive heat is also 20% lower, offering higher higher microstep output for smoother system performance. motor heat is 10-20 °C lower compare to a drive stability and energy efficiency. This function can improve smoothness of the stepper traditional stepper drive. Longer motor lifetime systems without upgrading your motion controllers. can be achieved, reducing maintenance cost.

Drive Heating Microstep Setting ——Synthesized Microsteps Motor Heating 10-20°C 20% Self-test and Auto-setup **Command Signal Smoothing** Torque Improving

Command signal smoothing can soften the effect of suddent Torque improvement increases torque up to 30% Motor-self-test and parameter-autochanges in velocity and direction, thus delivering smoother at high speed, therefore they can drive a normal configuration technology offers optimum performance and improving system liftime. stepper motor to 3000 RPM or even higher, and performance for different motors. It is easier significantly increase production efficiency.

Features

- Anti-Resonance optimizes torque and nulls mid-range instability
- Self-test and Auto-configuration technology offers optimum performance for different motors
- Multi-stepping allows a low resolution input to produce a higher microstep output for smoother system performance
- 2-phase and 3-phase stepper drives are available
- Options to set output current and microstep relolutions via DIP switch or software
- Command input of PUL/DIR and CW/CCW
- Over-current, over-voltage, short-circuit protections

Introduction

By implementing the latest motion control technologies, Leadshine's DM series DSP-based stepper drives deliver excellent performance not available before. Unique features of extra smoothness and excellent high speed performance make DM stepper drives deliver servo-like performance at the cost of stepper drives. They are capable of delivering high performance without damages to your machines or the materials. Leadshine DM series stepper drives are able to drive 2-phase or 3-phase stepper motors from NEMA8 to NEMA42.

Applications

Leadshine DM stepper drives are suitable for driving a wide range of stepper motors, from NEMA frame size 8 to 42. Typical applications includ CNC routers, laser cutters, laser markers, medical equipments, X-Y tables, measurement equipments, etc.

Electrical Specifications Parameters Input Voltage (VDC) Model Min Typical DM320C +18 +24 DM422C 🖅 +18 +24 DM442 +18 +36 DM556 🛲 +36 +18 DM870 +60 +18 DM1182 80 (VAC) 120 (VAC) 150 DM2282 80 (VAC) 230 (VAC) 240 3DM683 +18 +48DM805-AI +18 +60 Pulse Input Frequency (kHz) Log Parameters Model Min Max Min Typical 300** **DM** Series 0 7

* This model has UL approved version and non-UL approved version.

** Those of the DM320C and DM422C are 75 kHz, and that of the DM442 is 200 kHz.

				Output Curr	ent (A)			
lax			Min	Туріса	I		Max	
-30			0.3	-			2.0	
40			0.3	-			2.2	
40			0.5	-			4.2	
-50			0.5	-			5.6	
-80			0.5	-			7.0	
(VA	C)		0.5	-			8.2	
(VA	C)		0.5	_			8.2	
-60			0.5				8.2	
-80			0.5	-			7.0	
gic Signal Current (mA)		Isolation Resistance (M Ω)						
I	Турі	ical	Max	Min	Турі	cal	Max	
	1	0	16	500	-		-	

Pin Assignment and Description

There are two connector types for a DM stepper drive. Connector type P1 (See figure below.) is for control signal connections, and connector type P2 is for power and motor connections. The RS232 communication port is for parameter configurations via computer. See brief descriptions for these connectors and interface below.

Tips:

DM SER

1. Users are suggested to use motor self-test and auto-configuration function when powering up the system (with the motor) for the first time, or replacing a new motor.

2. To operate at current and microstep settings configured by software or STU, DIP switch must set to default mode.

3. Only software **ProTuner** can be used to configure anti-resonance parameter settings.

4. How many times the RED light blinks on in a periodic time indicates what protection has been activated. See manuals for detail.

PC Based and Handheld Configuration & Tuning Tools

For most of applications, configurations set by self-test and auto-configuration function should be good enough to meet the application requirements. However, a user can also configure the advanced features such as anti-resonance and advanced current loop tuning through software or STU-DM, a simple device specially designed for easy tuning.

ProTuner (Windows Based Setup Software)

- Upload and Download parameter settings
- PI parameter settings for current loop
- Microstep resolution and output current settings
- Operation mode configuration :PUL/DIR, CW/CCW, analog*
- DIR logic level setting
- Active edge of pulse signal setting
- Electronic damping coefficient setting
- Anti-resonance parameter settings for 3 resonance area
- Parameter settings for self motion test or a simple application
- Read the latest 10 failure events and clear these events
 - * 1 PC RS232 interface is necessary.

** Leadshine offers special cable for communication between ProTuner and the drive.

STU-DM (Handheld Configuration and Tuning Unit)

- Upload and Download parameter settings
- PI parameter settings for current loop
- Microstep resolution and output current settings
 - Operation mode configuration :PUL/DIR, CW/CCW, analog*
 - DIR logic level setting
 - Active edge of pulse signal setting
 - Parameter settings for self motion test or a simple application

* Leadshine offers special cable for communication between the STU-DM and the drive.

Typical Connections

(a) Differential control signals * Only DM805-AI support analog command for the moment.

M SERIES

(b) Single-ended (NPN) control signals

Introduction

DM42

The DM422C is a versatility fully digital stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque and nulls mid-range instability. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepper drives on the market.

Suitable for a wide range of stepper motors, from NEMA8 to NEMA23. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM422C an ideal solution for applications that require low-speed smoothness.

Function	Description
Microstep Setting	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, 6 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
Current Setting	Output current is programmable. When not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 2.2A. Select a current setting closest to your motor's required current.
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=I^{2}R$) of the original value.
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto- configuration control parameters, offering optimum performance with different motors
Control Signals	OPTO is for the opto-coupler power supply, typically+5V. PUL is for the pulse command signal. DIR is for the direction control signal. ENA is for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with output of 18 to 36 VDC, leaving room for power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual for more information.

Parameter Settings	Operating Cu	urrent Setting			
Microstep resolution and output current are programmable. When not in	Peak Current	RMS Current	SW1	SW2	SW3
software configured mode, the drive uses a 6-bit DIP switch to set microstep	Default (software c	onfigured, 0.3-2.2 A)	on	on	on
resolution, and motor operating current, as shown below:	0.5 A	0.35 A	off	on	on
Operating Current Setting Microstep Resolution Setting	0.7 A	0.5 A	on	off	on
All ON is software configured All ON is software configured	1.0 A	0.7 A	off	off	on
SW1 SW2 SW3 SW4 SW5 SW6	1.3 A	0.9 A	on	on	off
	1.6 A	1.2 A	off	on	off
Standstill Current (ON haft / OFF full)	1.9 A	1.4 A	on	off	off
Self-test and Auto-configuration (2 changes in 1 second)	2.2 A	1.6 A	off	off	off

Mechanical Specifications	Microstep Resolution Set	ting	
Units: mm_linch=25.4mm	Steps/rev.	SW5	SW6
86	Default (software configured, 1-512)	on	on
79	1600	off	on
	3200	on	off
	6400	off	off

DM556 c91 us

Introductio

The DM556 is a versatility fully digital stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepper drives on the market.

Applications

Suitable for a wide range of stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM556 an ideal solution for applications that require low-speed smoothness and good high speed performance..

Function Desc	ription
Function	
Microstep Setting	Microstep resolutions is programmable. When not in so the DIP switch. In order to avoid losing steps, do not cha
Current Setting	Output current is programmable. When it's not in soft switch. Up to 5.6 A. Select a current setting closest to yo
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduct the current will automatically reduced to 60% of the set this will reduce motor heating to 36% (due to $P=l^{2}R$) of
Self-test and auto-configuration	If the user changes the status/position of SW4 twic configuration control parameters, offering optimum per
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ enable/disable control signal. Series connect resistors for
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging motion direction.
Power Connector	Recommended to use power supplies with output of 20
Indicators	There are two LED indicators on the drive for power an up, and when the Red LED is on means the drive is in f drive by re-powering it to make it function properly after

Parameter Settings

Microstep resolution and output current are programmable. When not in software configured mode, the drive uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below:

Self-test and Auto-configuration (2 changes in 1 second)

Mechanical Specifications

Units: mm 1 inch = 25.4mm

Leadshine

Description

oftware configured mode, microstep resolution is set by SW5, 6, 7, 8 of ange the microstep resolution on the fly.

ware configured mode, operating current is set by SW1,2,3 of the DIP our motor's required current.

ion, self-test and auto-configuration function. When the former active, elected operating current 0.4 second after the last pulse. Theoretically, f the original value.

ce in 1 second, the drive will self-test the driving motor and autorformance with different motors ..

and DIR- are for the direction control signal. ENA+ and ENA- are for the or current-limiting when +12V or +24V is used.

ng the connection of two wires for a coil to the drive will reverse default

0 to 45 VDC, leaving room for power fluctuation and back-EMF.

nd alarm signals. When the Green LED is on means the drive is powered fault status. When in fault status, the motor shaft will be free. Reset the er removing problem(s). See its manual for more information.

perating Cu	Irrent Setting			
Peak Current	RMS Current	SW1	SW2	SW3
Default (software co	onfigured, 0.5-5.6 A)	off	off	off
2.1 A	1.5 A	on	off	off
2.7 A	1.9 A	off	on	off
3.2 A	2.3 A	on	on	off
3.8 A	2.7 A	off	off	on
4.3 A	3.1 A	on	off	on
4.9 A	3.5 A	off	on	on
5.6 A	4.0 A	on	on	on

Microstep Resolution S	Setting	3
Stens/rev	S/V/E	S/V

Steps/rev.	SW5	SW6	SW7	SW8
Default (software configured, 1-512)	on	on	on	on
400	off	on	on	on
800	on	off	on	on
1600	off	off	on	on
3200	on	on	off	on
6400	off	on	off	on
12800	on	off	off	on
25600	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
25000	off	off	off	off

Introduction

The DM870 is a versatility fully digital stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepper drives on the market.

DM87

Suitable for a wide range of stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM870 an ideal solution for applications that require low-speed smoothness and good high speed performance.

Function Description

Function	Description
Microstep Setting	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
Current Setting	Output current is programmable. When not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 7.0 A. Select a current setting closest to your motor's required current.
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=I^{2}R$) of the original value.
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto-configuration control parameters, offering optimum performance with different motors.
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with output of 20 to 68 VDC, leaving room for power fluctuation and back-EMF.
Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual for more information.

Parameter Settings		Operating Cu	Irrent Setting			
Microstep resolution and output	current are programmable. When not in	Peak Current	RMS Current	SW1	SW2	SW3
software configured mode, the driv	Default (software c	onfigured, 0.5-7.0 A)	off	off	off	
resolution, and motor operating cur	2.6 A	1.8 A	on	off	off	
Operating Current Setting Microstep Resolution Setting		3.4 A	2.4 A	off	on	off
All OFF is software configured 人	All ON is software configured 人	4.0 A	2.8 A	on	on	off
		4.8 A	3.4 A	off	off	on
SW1 SW2 SW3 SW4	SW5 SW6 SW7 SW8	5.4 A	3.8 A	on	off	on
Standstill Current (ON	6.1 A	4.3 A	off	on	on	
Self-test and Auto-configuration	n (2 changes in 1 second)	7.0 A	5.0 A	on	on	on

Mechanical Specifications **Microstep Resolution Setting** Steps/rev. SW5 SW6 SW7 SW/8 Units: mm 1 inch = 25.4mm Default (software configured, 1-512) on on on on 400 off on on on 800 on off on on 1600 off off on on 3200 on on off on 6400 off on off on 12800 off on off on 25600 off off off on 1000 on off on on 2000 off off on on 4000 off off on on 4-<u>03.5</u> 5000 off off off on 8000 on on off off 10000 off off on off 20000 off off on off

25000

off

off

off

off

DM1182

The DM1182 is a versatility fully digital stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating. smoother movement than most stepper drives on the market.

Applications

Suitable for a wide range of stepper motors, from NEMA34 to NEMA51. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM1182 an ideal solution for applications that require low-speed smoothness and good high speed performance.

Function Desc	Function Description					
Function						
Microstep Setting	Microstep resolution is programmable. When not in sol DIP switch. In order to avoid losing steps, do not change					
Current Setting	Output current is programmable. When not in software Up to 8.2 A. Select a current setting closest to your mot					
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reducti current will automatically reduced to 60% of the select reduce motor heating to 36% (due to $P = I^{2} * R$) of the orig					
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in control parameters, offering optimum performance with					
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ enable/ disable control signal. Series connect resistors for					
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging motion direction.					
Power Connector	Recommended to use power supplies with output of 9					
Indicators/ Fault Out	There are two LED indicators on the drive for power a up, and when the Red LED is on means the drive is in fa (OC) will be pulled to low. Reset the drive by re-pow manual for more information.					

Parameter Settings

Microstep resolution and output current are programmable. When not in software configured mode, the drive uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below:

Operating Current Setting All OFF is software configured			Mi	crostep Re	esolution student	Setting gured	
						Λ	
SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8

Standstill Current (ON haft / OFF full) Self-test and Auto-configuration (2 changes in 1 second)

Mechanical Specifications

Units: mm 1 inch = 25.4mm

Leadshine

DM1182
DM1182 DM2282
DM1182 DM2282 3DM683
DM1182 DM2282 3DM683 DM805-AI

Description

oftware configured mode, microstep resolution is set by SW5, 6, 7, 8 of the ge the microstep resolution on the fly.

e configured mode, operating current is set by SW1,2,3 of the DIP switch. otor's required current.

tion, self-test and auto-configuration function. When the former active, the ted operating current 0.4 second after the last pulse. Theoretically, this will iginal value.

n 1 second, the drive will self-test the driving motor and auto-configuration th different motors..

+ and DIR- are for the direction control signal. ENA+ and ENA- are for the for current-limiting when +12V or +24V is used.

ing the connection of two wires for a coil to the drive will reverse default

90 VAC to 120 VAC, leaving room for power fluctuation and back-EMF.

and alarm signals. When the Green LED is on means the drive is powered fault status. When in fault status, the motor shaft will be free and fault out wering it to make it function properly after removing problem(s). See its

Operating Cu	urrent Setting			
Peak Current	RMS Current	SW1	SW2	SW3
Default (software o	onfigured, 0.5-8.2 A)	off	off	off
2.2 A	1.6 A	on	off	off
3.2 A	2.3 A	off	on	off
4.5 A	3.2 A	on	on	off
5.2 A	3.7 A	off	off	on
6.3 A	4.4 A	on	off	on
7.2 A	5.2 A	off	on	on
8.2 A	5.9 A	on	on	on

Microstep Resolution Setting

Steps/rev.	SW5	SW6	SW7	SW8
efault (software configured, 1-512)	on	on	on	on
400	off	on	on	on
800	on	off	on	on
1600	off	off	on	on
3200	on	on	off	on
6400	off	on	off	on
12800	on	off	off	on
25600	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
25000	off	off	off	off

The DM2182 is a versatility fully digital stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating. smoother movement than most stepper drives on the market.

Applications

Suitable for a wide range of stepper motors, from NEMA34 to NEMA51. It can be used in various kinds of machines, such as medical machines, laser cutters, laser markers, high precision X-Y tables, labelling machines, and so on. Its unique features make the DM2182 an ideal solution for applications that require low-speed smoothness and good high speed performance.

Function Description

Function	Description
Microstep Setting	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
Current Setting	Output current is programmable. When not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 8.2 A. Select a current setting closest to your motor's required current.
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=l^{2}R$) of the original value.
Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto-configuration control parameters, offering optimum performance with different motors.
Control Signals	PUL+ and PUL- are for the pulse command signal. DIR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the enable/ disable control signal. Series connect resistors for current-limiting when +12V or +24V is used.
Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
Power Connector	Recommended to use power supplies with output of 90 VAC to 200 VAC, leaving room for power fluctuation and back-EMF.
Indicators/ Fault Out	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free and fault out (OC) will be pulled to low. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual for more information.

Parameter Settings	Operating Cu	urrent Setting			
Microstep resolution and output current are programmable. When not in Peak Current RMS Current					SW3
software configured mode, the drive uses an 8-bit DIP switch to set microster	Default (software c	onfigured, 0.5-8.2 A)	off	off	off
resolution, and motor operating current, as shown below:	2.2 A	1.6 A	on	off	off
Operating Current Setting Microstep Resolution Setting	3.2 A	2.3 A	off	on	off
All OFF is software configured All ON is software configured 人 人	4.5 A	3.2 A	on	on	off
	5.2 A	3.7 A	off	off	on
<u>SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8</u>	6.3 A	4.4 A	on	off	on
Standatill Courset (ON batt / OFF full)	7.2 A	5.2 A	off	on	on
Self-text and Auto-configuration (2 changes in 1 second)	8.2 A	5.9 A	on	on	on

Self-test and Auto-configuration (2 changes in 1 second)

Mechanical Specifications		Microstep Resolution S	Setting	5
Units: mm 1 inch = 25 4mm		Steps/rev.	SW5	SW6
omts. mm 1 mm - 25.4mm		Default (software configured, 1-512)	on	on
	5	400	off	on
		800	on	off
		1600	off	off
		3200	on	on
		6400	off	on
		12800	on	off
⊨		25600	off	off
õ		1000	on	on
		2000	off	on
		4000	on	off
		5000	off	off
		8000	on	on
		10000	off	on
← 137 → ←	$\xrightarrow{41}$ \times $\xrightarrow{25}$	20000	on	off
< ──		25000	off	off

SW7 SW8

on

on on

on

off

off

off

off

on

on

on

on off

off off

off

on

on

on

on

on

on

on

on off

off

off

off

off off

off

off

3DM683

Introduction

The 3DM683 is a versatility fully digital 3-phase stepper drive based on a DSP with advanced control algorithm. It brings a unique level of system smoothness, providing optimum torque, nulls mid-range instability and good high speed performance. Motor auto-identification and parameter auto-configuration technology offers optimum response with different motors. The driven motors can run with much lower noise, lower heating, smoother movement than most stepper drives on the market.

Applications

Applications Suitable for a wide range of stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of New York and the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA17 to NEMA34. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA17 to NEMA17 to NEMA17 to NEMA17 to NEMA17. It can be used in various kinds of the stepper motors, from NEMA17 to NEMA17 and so on. Its unique features make the 3DM683 an ideal solution for applications that require low-speed smoothness and good high speed performance.

Function Desc	unction Description					
Function						
Microstep Setting	Microstep resolution is programmable. When not in DIP switch. In order to avoid losing steps, do not char					
Current Setting	Output current is programmable. When not in softw Up to 8.3 A. Select a current setting closest to your m					
Automatic standstill current reduction;	SW4 is used for the automatic standstill current reducurrent will automatically reduced to 60% of the sele reduce motor heating to 36% (due to $P=I^{*}R$) of the c					
Self-test and auto-configuration	If the user changes the status/position of SW4 twice control parameters, offering optimum performance v					
Control Signals	PUL+ and PUL- are for the pulse command signal. D enable/ disable control signal. Series connect resistor					
Motor Connector	U, V, W are for motor connections. Exchanging the c					
Power Connector	Recommended to use power supplies with output of					
Indicators	There are two LED indicators on the drive for power up, and when the Red LED is on means the drive is drive by re-powering it to make it function properly a					

Parameter Settings

Microstep resolution and output current are programmable. When not in software configured mode, the drive uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below:

Standstill Current (ON haft / OFF full) Self-test and Auto-configuration (2 changes in 1 second)

Mechanical Specifications

Units: mm 1 inch = 25.4mm

Description

software configured mode, microstep resolution is set by SW5, 6, 7, 8 of the nge the microstep resolution on the fly.

vare configured mode, operating current is set by SW1,2,3 of the DIP switch. notor's required current.

uction, self-test and auto-configuration function. When the former active, the ected operating current 0.4 second after the last pulse. Theoretically, this will . original value.

in 1 second, the drive will self-test the driving motor and auto-configuration with different motors..

NR+ and DIR- are for the direction control signal. ENA+ and ENA- are for the rs for current-limiting when +12V or +24V is used.

onnection of two wires to the drive will reverse default motion direction.

f +20 VDC to +48 VDC, leaving room for power fluctuation and back-EMF.

and alarm signals. When the Green LED is on means the drive is powered in fault status. When in fault status, the motor shaft will be free. Reset the after removing problem(s). See its manual for more information.

Operating Cu	Irrent Setting			
Peak Current	RMS Current	SW1	SW2	SW3
Default (software c	onfigured, 0.5-8.3 A)	off	off	off
3.2 A	2.3 A	on	off	off
4.0 A	2.9 A	off	on	off
4.9 A	3.5 A	on	on	off
5.7 A	4.1 A	off	off	on
6.4 A	4.6 A	on	off	on
7.3 A	5.2 A	off	on	on
8.3 A	5.9 A	on	on	on

Microstep Resolution S	Setting	5		
Steps/rev.	SW5	SW6	SW7	SW8
Default (software configured)	on	on	on	on
400	off	on	on	on
800	on	off	on	on
1600	off	off	on	on
3200	on	on	off	on
6400	off	on	off	on
12800	on	off	off	on
25600	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
25000	off	off	off	off

DM805-A Introduction

The DM805-AI is a multi-function digital stepper drive and it belongs to DM series stepper drives. It has all the features that other DM drives have. The DM805-AI is distinguished from other DM series drives by it's operating modes. The DM805-AI can be operated in 4 different modes. They are 0-5V speed, low/high speed, external POT and pulse/direction modes.

Three built-in potentiometers can be used to set the velocity, acceleration and deceleration. In 0-5V speed mode, the motor speed follows the analog 0-5V input. In Low/HIGH speed mode, the motor speed is selected by the digital input and adjusted by the high/low speed potentiometers. In pulse/direction mode, the DM805-Al acts as a traditional stepper drive. There is a 5V auxiliary output for customer use. The user can run the motor with the least configuration and connection, without buying a expensive motion controller.

Function Description

Ī	Function	Description
	Microstep Setting	Microstep resolution is programmable. When not in software configured mode, microstep resolution is set by SW5, 6, 7, 8 of the DIP switch. In order to avoid losing steps, do not change the microstep resolution on the fly.
	Current Setting	Output current is programmable. When not in software configured mode, operating current is set by SW1,2,3 of the DIP switch. Up to 8.2 A. Select a current setting closest to your motor's required current.
	Automatic standstill current reduction;	SW4 is used for the automatic standstill current reduction, self-test and auto-configuration function. When the former active, the current will automatically reduced to 60% of the selected operating current 0.4 second after the last pulse. Theoretically, this will reduce motor heating to 36% (due to $P=I^{2}R$) of the original value.
	Self-test and auto-configuration	If the user changes the status/position of SW4 twice in 1 second, the drive will self-test the driving motor and auto-configuration control parameters, offering optimum performance with different motors.
	Control Signals	The DM805-AI is a multi-function digital stepper drive. It can be operated in 0-5V speed, low/high speed, externalPOT and pulse/direction modes. There are 3 potentiometers, 4 digital inputs and 1 analog input can be configured to control the acceleration, speed, position and direction in different modes.
	Motor Connector	A+, A- and B+, B- are for motor connections. Exchanging the connection of two wires for a coil to the drive will reverse default motion direction.
	Power Connector	Recommended to use power supplies with output of 20 to 80 VDC, leaving room for power fluctuation and back-EMF.
	Indicators	There are two LED indicators on the drive for power and alarm signals. When the Green LED is on means the drive is powered up, and when the Red LED is on means the drive is in fault status. When in fault status, the motor shaft will be free. Reset the drive by re-powering it to make it function properly after removing problem(s). See its manual for more information.

Parameter Settings	Microstep Resolution	Setting	
Microstep resolution, output current and operating mode are programmable.	Steps/rev.	SW5	SW6
When not in software configured mode, the drive uses an 8-bit DIP switch to set microstep resolution, and motor operating current, as shown below:	Default (software configured, 1-512)	on	on
	400	off	on
	1600	on	off
	12800	off	off

Op All OFF	Operating Current All OFF is software configured			Microstep Resolution All ON is software configured			erating M	lode
					L		4	
SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8]

Standstill Current (ON haft / OFF full) Self-test and Auto-configuration (2 changes in 1 second)

Operating C	urrent Setting			
Peak Current	RMS Current	SW1	SW2	SW3
Default (software o	onfigured, 0.5-7.0 A)	off	off	off
2.6 A	1.8 A	on	off	off
3.4 A	2.4 A	off	on	off
4.0 A	2.8 A	on	on	off
4.8 A	3.4 A	off	off	on
5.4 A	3.8 A	on	off	on
6.1 A	4.3 A	off	on	on
7.0 A	5.0 A	on	on	on

Mechanical Specifications

Applications

Particularly suitable for the applications which need to adjust the velocity via the potentiometer or analog 0-5V command. Owing to high torque and super-low motor noise at low speed, stepper solution based on the DM805-AI can be used to replace the brushless motor and gearbox solution, which is used in various kinds of machines, such as rotary heat exchange, conveyor belts, transport vehicle, offering longer life time and lower cost than the later

Operating Mode Setting						
Operating Modes	SW7	SW8				
0~5 V Speed	on	on	Speed controlled by the 0~5V, an			
Low/High Speed	off	on	Speed controlled by the preset lo			
External POT	on	off	Both speed and direction are con			
Pulse/Direction	off	off	Speed and movement distance a			

otentiometer Function in Different Operating Modes							
Potentiometers	0~5V Speed Mode	Low/High Speed Mode	External POT Mode	Pulse/Direction Mode			
Accel / Ramp	Acceleration	Ramp	Acceleration	N/A			
Decel / LoSpeed	Deceleration	Low Speed	Deceleration	N/A			
HiSpeed	High Speed	High Speed	High Speed	N/A			

Typical Connections

(c) External POT Mode

Descriptions

nd direction controlled by the direction input.

by speed and high speed, and direction control by the direction input.

ntrolled by the 0~5V. 0~2.5 V, negative direction; 2.5~5V, positive direction. are controlled by the pulse, and direction controlled by the direction input.

(d) Pulse/Direction Mode

DM805-AI

M Series Analog Stepper Drives

Features

- The 3rd generation of economical high performance stepper drives
- Self-adjustment technology, providing optimal performance with different motors
- Precise current control technology with less motor heating
- ◆ 7 models, covering 20 VDC to 112VDC or 18 VAC to 80VAC operating voltage ranges
- Excellent high-speed performance
- Smoother movement at low-speed
- Lower motor noise and heating than most analog stepper drives on the market
- Replace or upgrade all old M series drives

Introduction

The new M series drives are the latest analog stepper drives Leadshine has developed after more than 12 years R&D experiences. These drives provide better performance and offer higher performance-price ratios. They are the most cost-effective stepper drives on the market.

The new M series stepper drives employ Leadshine's innovative patented control technologies. With the adoption of its pioneer "pure-sinusoidal current control technology" and the latest "self-adjustment technology", those drives can effectively reduce current ripples and mid-range vibration, enabling different motors to run at optimal performance and with lower heating. They can also eliminate drawbacks of difficulty of driving various motors, such as high heating with smaller inductance motors, low high-speed torque with large inductance motors, poor performance under low voltage, and high motor heating under high voltage.

The new M series stepper drives use three digital filters which greatly improve anti-interference performance, and increase the precision and stability of machines

Application and Position

The new M series includes seven models. DC input models include the M550/M760/M860/M880A, and AC & DC input models include the MA550/MA860/MA860H. Suitable to drive 2-phase stepper motors (form NEMA17 to 42) using in industrial and office automation applications. The AC input models cut cost by using a simpler power supply (ie. a transformer without power rectifier).

Traditional stepper drives New M series Pure-sinusoidal current control technology means smoother movement (No creep phenomenon)

Part Nun	nber						
M 	Fraditional series (3 rd	A: AC&DC input Blank: DC input generation)	8 Maxir 8 = 80	60 num supply voltage V	Maximum ou 60 = 6.0 A e	H T Spec tput current Blani H: Hi	ial model number <: Normal version gh voltage
Selection	Table						
Model	Models to be Replaced	Output Current (A)	Supply Voltage (V)	Size (mm)	Driving Motors		trol Signal
M550 🚅	M535, M542, ME542	1.2 to 5.0	20 to 45VDC	118*75.5*34 271	14, 17, 23	PUL/DIR; CW/CCW	Single-ended; Differential
M760 🗷	M840, M839, ME742	1.45 to 6.0	20 to 70VDC	118*75.5*34 280	14, 17, 23, 34	PUL/DIR; CW/CCW	Single-ended; Differential
M860 V5.0	M860	2.4 to 7.2	24 to 80VDC	151*97*48 570	17, 23, 34	PUL/DIR; CW/CCW	Single-ended; Differential
M880A 🚅	M860, M880, ME872	2.5 to 7.8	24 to 75VDC	151*97*48 565	23, 34, 42	PUL/DIR; CW/CCW	Single-ended; Differential
MA860	M860, M880, MD882	2.4 to 7.2	24 to 60VAC	151*97*48 570	23, 34	PUL/DIR; CW/CCW	Single-ended; Differential
MA860H		2.4 to 7.2	36 to 80VAC	151*97*52 590	34, 42	PUL/DIR; CW/CCW	Single-ended; Differential

Operating Environment and Other Specifications

Cooling		Natural cooling or forced cooling
	Environment	Avoid dust, oil fog and
Operating	Ambient Temperature	0 to +5
Environment	Humidity	40-90%
	Vibration	5.9m/s
Storage Temperature		-20 to 1

Tips

1. Working temperature for M series drives should below 70°C (158°F); and motor working temperature should below 80°C (176°F). Use automatic idlecurrent function to reduce drive and motor heating when a motor stops. Use forced cooling to cool the system if necessary.

2. To improve anti-interference performance of the system, use twisted pair shielded cable for control signals and correctly ground the system. To prevent noise coupling on pulse/direction signals, pulse/direction signal wires, motor wires and power wires should not be tied up together. Separate them by at least 10 centimeters (4 inches) to avoid disturbing signals generated by a stepper motor, which can easily disturb pulse and direction signals and cause motor position error, system instability and other failures.

3. Don't pull and plug motor or power wires while a stepper drive is powered ON, because there is high current flowing through motor coils (even stopped). Doing that would result in extremely high voltage surge, and could damage the drive.

4. If a power supply serves multiple drives, separately connecting the drives (each in a star arrangements) is recommended instead of daisy-chain arrangement

Typical stepper System

Control Signal Interface and Timing Chart

The M series drives can accept differential and single-ended inputs, including open-collector and PNP signals. The drives have 3 optically isolated logic inputs which are located on connector P1 to accept line driver control signals. The inputs are isolated to minimize or eliminate electrical noises coupling onto the drive control signals. Use line driver control signals to increase noise immunity of a drive in interference environments. In the following figures, connections to open-collector and PNP signals are illustrated. In order to avoid some fault operations and deviations, PUL, DIR and ENA should abide by the timing rules shown in the following timing diagram. Connections and timing diagram of control signals are shown in the following figures.

* This model has UL approved version and non-UL approved version.

corrosive gases

50 °C 6 RH s² MAX 125 °C

M SERIES

Control signal connections

Series connect resistors for current-limiting when +12V or +24V used. R=1K (>0.25W) if VCC=12V; R=2K (>0.25W) if VCC=24V. Make sure that the current through the opto-coupler is between 7 mA and 16 mA.

In order to avoid faults in operations, PUL, DIR and ENA signals should abide by the timing rules shown in this timing diagram.

Notes:

(a) t1: ENA must be ahead of DIR by at least 5 μ s. Usually, ENA+ and ENA- are NC (not connected), drive is enabled. (b) t2: DIR must be ahead of PUL's effective edge by 5 μ s to ensure correct direction;

(c) t3: High level width not less than 2.5 μ s;

(d) t4: Low level width not less than 2.5 μ s.

Problem Symptoms and Possible Causes

Symptoms	Possible Causes			
	No power			
	No motion command signal			
Motor is not rotating	DIP switch current or microstep resolution setting is wrong			
wotor is not rotating	Fault condition exists			
	The drive is disabled			
	Drive failure			
	Motor phases may be connected in reverse			
Motor rotates in wrong direction	Direction control signal may be in reverse			
	Opto-coupler for DIR inputs is broken			
	Over voltage protection			
Drive is in fault	Over current protection			
	Something wrong with motor coil			
	Control signal is too weak or interfered			
Evertia motor motion	Wrong motor connection			
Enally motor motion	Something wrong with motor coil			
	Current setting is too small, losing steps			
	Current setting is too small, not enough torque			
Motor stalls during acceleration	Motor is undersized for the application			
	Acceleration is set too high			
	Power supply voltage too low			
	Inadequate heat sinking / cooling			
Excessive motor and drive heating	Automatic current reduction function not being utilized			
Excessive motor and drive nearing	Current is set too high			
	Supply voltage too high			

iST Integrated Steppers (Open loop Stepper Systems)

Motor + Drive + Controller + Network

iST Series (Open-loop Stepper Systems)

iST Series Integrated Steppers

Introduction

Leadshine's iST series integrated steppers are one of the most compact stepper systems available on the market. An iST integrated stepper has a stepper motor and an advanced DSP stepper drive. At very compact size and with all components integrated, the iST series steppers can save mounting space, eliminate encoder connection and motor wiring time, reduce interference, and lower cable and labour cost. Owe to its advanced DSP stepper drive, the iST series integrated steppers offer high starting torque, high precision and smooth movement, and super-low noise at low speed movement with no obvious resonance area. The drive takes step & direction commands, and is capable of outputting fault signals back to the master controller or external devices for complete system controls.

Part Number

Please visit Leadshine's website at www.leadshine.com for the latest information about the iST series integrated steppers. *Higher torque, motor body is NEMA24 while the specifications for mounting are the same as standard NEMA23 motors.

Highly Integrated

Features

- Highly Integrated, Stepper motor + advanced DSP stepper drive
- Super-low motor noise
- Anti-Resonance optimizes torque and nulls mid-range instability
- Multi-stepping allows a low resolution input to produce a higher microstep output for smoother system performance
- Options to set output current and microstep resolutions via DIP switch or software
- Command input of PUL/DIR and CW/CCW
- Over-current, over-voltage, short-circuit protections

Specifications

N	Nodel	iST-17 iST-23 and iST-23B		iST-24	
Operating Voltage (VDC)		24	18 to 48	18 to 70	
Holding	Torque (Nm)	0.3, 0.4, 0.5 and 0.6	0.9, 1.0, 1.5, 2.0 and 2.5	1.2, 1.8, 2.4 and 3.0	
Operat	ion Modes	Ste	p & Direction, RS485 and CANor	ben	
/laximum Inp	ut Frequency (kHz)		500		
Protectio	on Functions	Over-current, Over-voltage			
Inpute	Step & Direction	Step & Direction, Enable (differential)			
inputs	RS485 / CANopen	4 digi	tal inputs, 1 analog input (single	-end)	
Outpute	Step & Direction		fault out (differential)		
Outputs	RS485 / CANopen	2 digital outputs (open collector)			
Storage	Temperature	-20 °C to 80 °C			
Ambient	Temperature	0 °C to 50 °C (Heat sink)			
Hu	midity		40%RH to 90%RH		

Operation Modes

1. Step & Direction

- Support step & direction and CW/CCW pulse commands
- Compatible with 5 to 24 V command signals

2. RS485

- One host up to 32 drives
- Can be used with either 2-wire (half-duplex) or 4-wire RS485 (full-duplex) implementation
- DLL is available for API function calling
- Easy to wire and build multi-axis systems

3. CANopen

- One host up to 127 drives
- CANopen standards: CiA Standard 301 (DS301), CiA Standard 402 (DSP402)
- Up t 1 Mbit/sec speeds possible
- Easy to wire and build multi-axis systems

Typical System Configurations

1. Step & Direction

2. RS485 and CANopen

Home, Limits RS485/CANopen RS485/CANopen Image: Master Controller Image: Image:

Mechanical Specifications

Frame Size	Motor Body Length (mm)	Holding Torque (Nm)	Model
	L = 33	0.3	iST-1703-xxx
iST-17	L = 39	0.4	iST-1704-xxx
(NEMA17)	L = 47	0.5	iST-1705-xxx
	L = 58	0.6	iST-1706-xxx
iST-23	L = 56	1.0	iST-2310-xxx
(NEMA23)	L = 80	2.0	iST-2320-xxx
	L = 47	1.2	iST-2412-xxx
iST-24 (NEMA24)	L = 55	1.8	iST-2418-xxx
	L = 68	2.4	iST-2424-xxx
	L = 85	3.0	iST-2430-xxx

Stepper Motors

Ó

Selection Guide
2-phase Stepper Motors
35HSxx 39
39HSxx 39
42HSxx 40
57HSxx 41
86HSxx 42
110HSxx 43
130HSxx 44
3-phase Stepper Motors
573Sxx 45
863Sxx 46
Speed-Torque Curves of 2-phase Motors 47
Speed-Torque Curves of 3-phase Motors 48

Stepper Motor Basic

A stepper motor is an electromechanical device which converts electrical pulses into discrete mechanical movements. The shaft of a stepper motor rotates in discrete step increments when electrical command pulses are applied to it in a proper sequence. The motor rotation has several direct relationships to these applied input pulses. The sequence of the applied pulses is directly related to the direction of motor shafts rotation. The speed of the motor shafts rotation is directly related to the frequency of the input pulses and the length of rotation is directly related to the number of input pulses applied.

A stepper motor can be a good choice whenever controlled movement is required. They can be used in applications where you need to control rotation angle, speed, position and synchronism. Because of the inherent advantages, stepper motors have found their places in many different applications, such as CNC routers, laser machines, and so on.

The length of rotation is directly related to the number of input pulses applied.

Stepper Motor Types

There are three basic stepper motor types. They are variable-reluctance, permanent-magnet and hybrid.

Variable-reluctance (VR)

This type of motor consists of a soft iron multi-toothed rotor and a wound stator. When the stator windings are energized with DC current the poles become magnetized. Rotation occurs when the rotor teeth are attracted to the energized stator poles.

Permanent Magnet (PM)

Often referred to as a "tin can" or "canstock" motor, the permanent magnet step motor is a low cost and low resolution type motor. PM motors as the name implies have permanent magnets added to the motor structure. The magnetized rotor poles provide an increased magnetic flux intensity and because of this the PM motor exhibits improved torque characteristics when compared with the VR type.

Hybrid (HB)

57HS×

86HS>

The hybrid stepper motor provides better performance with respect to step resolution, torque and speed. The hybrid stepper motor combines the best features of both the PM and VR type stepper motors. The rotor is multi-toothed like the VR motor and contains an axially magnetized concentric magnet around its shaft. This further increases the detent, holding and dynamic torque characteristics of the motor when compared with both the VR and PM types. Generally speaking, the hybrid motor may be the better choice along with reducing cost, for it offers better performance with respect to step resolution, torque and speed.

Normal Selection Steps

You can follow the following steps to choose a stepper motor.

1. Determining the Drive Mechanism Component

Determine the mechanism and required specifications. First, determine certain features of the design, such as mechanism, rough dimensions, distances moved, and positioning period.

2. Calculate the Required Resolution

Find the resolution the motor requires. From the required resolution, determine whether a motor only or a geared motor is to be used. The resolution and positioning accuracy of a stepper motor system is affected by several factors—the stepper angle, the selected drive mode (full-step, half-step or microstepper), and the gear rate

3. Determine the Operating Pattern

Determine the operating pattern that fulfills the required specifications. Find the acceleration (deceleration) period and operating pulse speed in order to calculate the acceleration torque

4. Calculate the Required Torque

Calculate the load torque and acceleration torque and find the required torque demanded by the motor.

5. Select the Motor

Make a provisional selection of a motor based on required torque. Determine the motor to be used from the speed-torque characteristics. 6. Check the Selected Motor

Confirm the acceleration/deceleration rate and inertia ratio.

Motor Connections

The M series drives can drive any 2-phase, 4-phase hybrid stepper motors, including 4-lead, 6-lead and 8-lead motors. Step angle of the motors can be 1.8 or 0.9 degree. For 6-lead and 8-lead stepper motors, different connections have different performance shown in the following figures.

Leadshine's Stepper Motors

Leadshine offers 2-phase and 3-phase stepper motors from NEMA14 to NEMA51. Made of high quality cold roll sheet copper and anti-high temperature permanent magnet, these stepper motors are highly reliable and generate low motor heating. Because of their nice internal damping characteristics, those stepper motors can run very smoothly and have no obvious resonance area within the whole speed ranges.

Seleo	Selection Table									
Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
	14	35HS01	1.8	4	-	0.4	0.07	26	0.15	EM402 / DM422C
	16	39HS02	1.8	4	-	0.6	0.22	34	0.2	EM402 / DM422C
		42HS02	1.8	4	-	0.4	0.22	40	0.24	EM402 / DM422C
	17	42HS03 1.8			Parallel	1.4	0.47			
	1/		1.8	8	Series	0.7	0.47	48	0.34	EM402 / DM422C
					Unipolar	1.0	0.34			
		57HS04	1.8	6	Series	2.0	0.4	41	0.45	EM503 / DM556
					Unipolar	2.8	0.28			
					Parallel	4.2	1.3			
		57HS09	1.8	8	Series	2.1	1.3	54	0.6	EM503 / DM556
					Unipolar	2.8	0.9			
	23				Parallel	4.0	1.8	76	1.0	EM503 / EM705 / DM556 / DM870
		57HS13 1.8	1.8	8	Series	2.0	1.8			
2					Unipolar	2.8	1.3			
			7HS22 1.8	8	Parallel	5.6	2.2	81	1.15	EM503 / EM705 / DM556 / DM870
-		57HS22			Series	2.8	2.2			
					Unipolar	4.0	1.5			
				1.8 8	Parallel	4.0	3.5	65 1.7		EM705 / EM806 / DM870
		86HS35	1.8		Series	2.0	3.5		1.7	
					Unipolar	2.8	2.5			
				8	Parallel	6.0	4.5	80	2.3	EM806 / DM870 / DM1182
	34	86HS45	1.8		Series	3.0	4.5			
					Unipolar	4.2	3.2			
					Parallel	6.8	8.5			
		86HS85	1.8	8	Series	3.4	8.5	118	3.8	EM806 / DM870 / DM1182 / DM2282
					Unipolar	4.9	6.0			
	42	110HS12	1.8	4	-	5.0	12	99	5.0	DM1182 / DM2282
		110HS20	1.8	4	-	6.5	20	150	8.4	DM1182 / DM2282
	51	130HS27	1.8	4	-	6.0	27	227	13	DM1182 / DM2282
		130HS45	1.8	4	-	7.0	45	283	19	DM1182 / DM2282
		573S05	1.2	6	Delta	5.2	0.45	42	0.45	3DM683 / 3DM883
	23	573S09	1.2	6	Delta	3.5	0.9	50	0.75	3DM683 / 3DM883
3		573S15	1.2	6	Delta	5.8	1.3	76	1.1	3DM683 / 3DM883
		863S22	1.2	6	Delta	5.0	2.3	71	1.7	3DM683 / 3DM883
	34	863S42	1.2	6	Delta	5.0	4.3	103	2.9	3DM683 / 3DM883
		863S68H	1.2	6	Delta	2.3	6.8	135	4.0	3DM683 / 3DM883

Part Nulliper	
5 7	<u>н</u> s
Motor frame size	Motor type
57: 57 mm(NEMA size 23)	HS: 2-phase

Dent Month

hybrid stepper moto 3S: 3-phase hybrid stepper motor

6-lead half-coil connection Better high speed performance due to smaller inductance

Higher torque than half-coil at low speed with the same curren

0	9	
Ť	Ľ	
_		

0 1

Holding torque 09 = 0.9 N*m

Design number Blank: Standard 0X: Design number

Shaft number Blank: Single shaft B: Double shaft

 \square

35HSxx/39HSxx Series

\pm 5%(full step, no load)
80 °C Max
-10 °C — +50 °C
100M Ω min. 500VDC
500VAC for one minute
0.06 Max. (450g-load)
0.08 Max. (450g-load)

Se	action	Table
36	iection i	Table

Phase NEMA Model Step Angle # of Connection Current/Phase Holding Torque Length Weight Match Driv	
Size Violei (*) Leads Connection (A) (Nm) L (mm) (kg) (violei (*)	/es
14 35HS01 1.8 4 ⁻ 0.4 0.07 26 0.15 EM402 / DM	422C
² 16 39HS02 1.8 4 ⁻ 0.6 0.22 34 0.20 EM402 / DM	422C

42HSxx Series

General Specifications	
Angle Accuracy	\pm 5%(full step, no load)
Temperature Rise	80 °C Max
Ambient Temperature	-10 °C — +50 °C
Insulation Resistance	100M Ω min. 500VDC
Dielectric Strength	500VAC for one minute
Shaft Radial Play	0.06 Max. (450g-load)
Shaft Axial Play	0.08 Max. (450g-load)

Selection Table										
Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
2	17	42HS02	1.8	4	-	0.4	0.22	40	0.24	EM402 / DM422C
		17 42HS03	1.8	8	Parallel	1.4	0.47	48	0.34	EM402 / DM422C
					Series	0.7	0.47			
					Unipolar	1.0	0.34			

Mechanical Specifications

Match	Drives
Model	Match Drives
42HSxx	EM402 / DM422C
42HSxx	EM402 / DM422C

57HSxx Series

General Specifications	
Angle Accuracy	\pm 5%(full step, no load)
Temperature Rise	80 °C Max
Ambient Temperature	-10 °C — +50 °C
Insulation Resistance	100M Ω min. 500VDC
Dielectric Strength	500VAC for one minute
Shaft Radial Play	0.06 Max. (450g-load)
Shaft Axial Play	0.08 Max. (450g-load)

Selection Table

Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives	
		57HS04	1.8	6	Series	2.0	0.4	41	0.45	EM503 / DM556	
					Unipolar	2.8	0.28				
		57HS09 57HS13 57HS22*		8	Parallel	4.2	1.3		0.6	EM503 / EM705 / DM556	
	23		1.8		Series	2.1	1.3	54			
					Unipolar	2.8	0.9				
2			1.8		Parallel	4.0	1.8	76	1.0	EM503 / EM705 / DM556	
				8	Series	2.0	1.8				
					Unipolar	2.8	1.3				
				8	Parallel	5.6	2.2		1.15	EM503 / EM705 / DM556	
			* 1.8		Series	2.8	2.2	81			
							Unipolar	40	15		

* The diameter of the shaft of the 57HS22 is 8 mm, and those of the others are 6.35 mm.

86HSxx Series

General Specifications									
Angle Accuracy	\pm 5%(full step, no load)								
Temperature Rise	80 °C Max								
Ambient Temperature	-10 °C — +50 °C								
Insulation Resistance	100M Ω min. 500VDC								
Dielectric Strength	500VAC for one minute								
Shaft Radial Play	0.06 Max. (450g-load)								
Shaft Axial Play	0.08 Max. (450g-load)								

Selec	tion Tab	le								
Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
					Parallel	4.0	3.5			
		86HS35	1.8	8	Series	2.0	3.5	65	1.7	EM705 / EM806 / DM870 EM705 / EM806 / DM870 / DM1182
					Unipolar	2.8	2.5			
		86HS45	1.8	8	Parallel	6.0	4.5	80	2.3	
2	34				Series	3.0	4.5			
					Unipolar	4.2	3.2			
		86HS85		8	Parallel	6.8	8.5			
			1.8		Series	3.4	8.5	118	3.8	EM806 / DM870 / DM1182 / DM2282
					Unipolar	4.9	6.0			

Specifications of Motor Shafts Model 86HS35 9.5 / / 86HS45 12.7 1 1 14.9 5*5*25 86HS85 12.7

The Shaft of the 86HS45 * The shaft of the 86HS35 is round, no flat.

110HSxx Series

General Specifications	
Angle Accuracy	\pm 5%(full step, no load)
Temperature Rise	80 °C Max
Ambient Temperature	-10 °C — +50 °C
Insulation Resistance	100M Ω min. 500VDC
Dielectric Strength	500VAC for one minute
Shaft Radial Play	0.06 Max. (450g-load)
Shaft Axial Play	0.08 Max. (450g-load)

Selec	Selection Table												
Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives			
		110HS12	1.8	4	-	6.0	12	115	6.0	DM2282 / DM1182			
2	42	110HS20	1.8	4	-	6.0	20	150	8.4	DM2282 / DM1182			
		110HS28	1.8	4	-	6.5	28	201	11.7	DM2282 / DM1182			

Mechanical Specifications

Wiring Diagram

Match Drives	
Model	Match Drives
110HS12	
110HS20	DM2282 / DM1182
110HS28	

130HSxx Series

General Specifications	
Angle Accuracy	\pm 5%(full step, no load)
Temperature Rise	80 °C Max
Ambient Temperature	-10 °C — +50 °C
Insulation Resistance	100M Ω min. 500VDC
Dielectric Strength	500VAC for one minute
Shaft Radial Play	0.06 Max. (450g-load)
Shaft Axial Play	0.08 Max. (450g-load)

Selec	Selection Table													
Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives				
		130HS27	1.8	4	-	6.0	27	227	13	DM2282 / DM1182				
2	51	130HS33	1.8	4	-	6.0	33	227	13	DM2282 / DM1182				
2	JI	130HS40	1.8	4	-	7.0	40	283	16	DM2282 / DM1182				
		130HS45	1.8	4	-	7.0	45	283	19	DM2282 / DM1182				

45

10

Match [Drives	
Model	Match Drives	
130HSxx	DM2282 / DM1182	

573Sxx Series

General Specifications	
Angle Accuracy	\pm 5%(full step, no load)
Temperature Rise	80 °C Max
Ambient Temperature	-10 °C — +50 °C
Insulation Resistance	100M Ω min. 500VDC
Dielectric Strength	500VAC for one minute
Shaft Radial Play	0.06 Max. (450g-load)
Shaft Axial Play	0.08 Max. (450g-load)

Selection Table

Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives
		573S05	1.2	6	Delta	5.2	0.45	42	0.45	3DM683 / 3DM883
3	23	573S09	1.2	6	Delta	3.5	0.9	50	0.75	3DM683 / 3DM883
		573S15	1.2	6	Delta	5.8	1.3	76	1.1	3DM683 / 3DM883

* The diameter of the shaft of the 573S15 is 8 mm, and those of the others are 6.35 mm. Mechanical Specifications

Unit: mm 1inch=25.4mm

** The diameter of the shaft of the 573S15 is 8 mm, and those of the others are 6.35 mm.

47.1±0.2

863Sxx Series

General Specifications	
Angle Accuracy	±5%(full step, no load)
Temperature Rise	80 °C Max
Ambient Temperature	-10 °C — +50 °C
Insulation Resistance	100M Ω min. 500VDC
Dielectric Strength	500VAC for one minute
Shaft Radial Play	0.06 Max. (450g-load)
Shaft Axial Play	0.08 Max. (450g-load)

Selec	Selection Table												
Phase	NEMA Size	Model	Step Angle (°)	# of Leads	Connection	Current/Phase (A)	Holding Torque (Nm)	Length L (mm)	Weight (kg)	Match Drives			
3	23	863S22	1.2	6	Delta	5.0	2.3	71	1.7	3DM683 / 3DM883			
		863S42	1.2	6	Delta	5.0	4.3	103	2.9	3DM683 / 3DM883			
		863S68H	1.2	6	Delta	2.3	6.8	135	4.0	3DM683 / 3DM883			

Mechanical Specifications

°12°

Ø 73±0.05

Unit: mm 1inch=25.4mm 863522, 863542 31.75 L MAX 85.85 69.5±0.2 . 8.38 ∂⊕

Match Drives	
Model	Match Drives
863S22	3DM683 / 3DM883
863S42	3DM683 / 3DM883
863S68H	3DM683 / 3DM883

Wiring Diagram

5

4-Ø5.5

Speed-Torque Curves of 2-phase Stepper Motors

Stepper Motor: 57HS09 Output Current: 3.8 A(Peak)

Microstep: 1600 PPR

Connection: Parallel

Stepper Motor: 57HS22 Output Current: 5.6 A(Peak) Stepper Drive: MD556 Microstep: 2000 PPR Input Voltage: 36 VDC Connection: Parallel

86HS85

Stepper Drive: MD882 Microstep: 3200 PPR Input Voltage: 68 VDC Connection: Parallel

Stepper Motor: 86HS85 Output Current: 7.3 A (Peak)

Stepper Drive: MD556 Input Voltage: 36 VDC

Stepper Motor: 57HS13 Output Current: 3.8 A(Peak) Microstep: 2000 PPR Connection: Parallel

Stepper Drive: MD882 Microstep: 2000 PPR Input Voltage: 64 VDC Connection: Parallel

110HS20

Stepper Motor: 110HS20 Output Current: 7.8 A (Peak) Stepper Drive: MD2278 Microstep: 400 PPR Input Voltage: 110 VAC Connection: Parallel

Speed-Torque Curves of 3-phase Stepper Motors

Stepper Motor: 573S09 Output Current: 4.9 A(Peak) Stepper Drive: 3MD560 Microstep: 2000 PPR Input Voltage: 36 VDC Connection: Delta

0.0 0 300 600 900 1200 1500 1800 2100 2400 Rotation speed(RPM)

Stepper Drive: 3ND883 Microstep: 2000 PPR Input Voltage: 64 VDC

Stepper Motor: 863S22 Output Current: 6.6 A(Peak) Connection: Delta

863S68H

Stepper Motor: 863S68H Output Current: 3.36 A(Peak) Stepper Drive: 3MD2380 Microstep: 2000 PPR Input Voltage: 220 VAC Connection: Delta

863542

Stepper Motor: 863S42 Stepper Drive: 3ND883 Input Voltage: 64 VDC

Output Current: 7.4 A(Peak) Microstep: 2000 PPR Connection: Delta