Data sheet

Wire type and power	DC 3-wire type 12-24VDC
Sensing side diameter	M18
Sensing distance	8mm
Installation	Non-shield(non-flush)
Standard sensing target	25×25×1mm(iron)
Response frequency	350Hz
Current specification	Current consumption: Max. 10mA
Control output	NPN Normally Open
Material	Brass(nickel plated)
Cable Standard/material	Standard cable
Protection structure	IP67
Approval	C€
Body length	Long body
Environment_Ambient temperature	-25 to 70°C, storage: -30 to 80°C
Environment_Ambient humidity	35 to 95% RH, storage: 35 to 95% RH
Hysteresis (distance)	Max. 10% of sensing distance
Residual voltage	Max. 1.5V
Weight	Approx. 142g(approx. 130g)

%The response frequency is the average value. The standard sensing target is used and the width is set as 2 times of the standard sensing target, 1/2 of the sensing distance for the distance. %The weight includes packaging. The weight in parenthesis is for unit only.

 $[\]label{thm:problem} \mbox{\@scalebase}{\@s$